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1. Introduction

Let X be a topological space and let F be a nonempty family of real functions
defined on X . For F , we define the maximal additive class Madd(F) as

Madd(F) = {f : X → R; f + g ∈ F for every g ∈ F},

the maximal multiplicative class Mmult(F) as

Mmult(F) = {f : X → R; f · g ∈ F for every g ∈ F},

the maximal class with respect tu maximum Mmax(F) as

Mmax(F) = {f : X → R; max(f, g) ∈ F for every g ∈ F},

the maximal class with respect to minimum Mmin(F) as

Mmin(F) = {f : X → R; min(f, g) ∈ F for every g ∈ F},
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and the maximal latticelike class Mlatt(F) as

Mlatt(F) = {f : X → R; max(f, g) ∈ F and min(f, g) ∈ F for every g ∈ F}.

The notion of maximal classes for certain family of functions might be used for
the first time in the Bruckner’s monograph [8]. The maximal additive class is always
nonempty because the zero constant function 0 (i.e. f(x) = 0 for all x ∈ X) belongs
to Madd(F) for each family F . Similarly, the maximal multiplicative family is always
nonempty because the constant function 1 (f(x) = 1) belongs to Mmult(F). The
classes Mmax(F), Mmin(F) and Mlatt(F) can be empty (e.g for quasicontinuous
functions with closed graph). Further, if the constant function 0 belongs to F then
Madd(F) ⊂ F , and if the constant function 1 belongs to F then Mmult(F) ⊂ F . If F
is closed under addition then F ⊂ Madd(F), and if F is closed under multiplication
then F ⊂ Mmult(F). So, if the family F is closed under addition and contains the
constant 0 function then Madd(F) = F , and similarly, if the family F is closed under
multiplication and contains the constant 1 function, then Mmult(F) = F . This is
true also conversely.

If F = −F (where −F = {f ;−f ∈ F}) then Mmin(F) = −Mmax(F). Moreover,
Mlatt(F) = Mmax(F) ∩Mmin(F). Therefore, if we have knowledge of the maximal
classes Mmax(F) and Mmin(F) then we have knowledge of Mlatt(F), too. However,
for some families (e.g. for quasicontinuous almost continuous (in the sense of Stallings)
functions), we have knowledge of Mlatt(F), however, a characterization of maximal
classes with respect to maximum or minimum is an open problem.

Moreover, we can define maximal classes with respect to composition of functions:
Mout(F) = {f ; f ◦ g ∈ F for every g ∈ F} and Min(F) = {f ; g ◦ f ∈ F for every g ∈
F}. Maximal classes with respect to composition were investigated e.g. in [3, 29, 37, 54,
55]. The main problem with characterizations of maximal classes is that the operator
of maximal classes is not monotone. Hence, a characterizations of maximal classes can
be unexpected and interesting. Unfortunately, the results concerning maximal classes
are scattered throughout the literature. In this paper, we will deal with maximal
classes for some families of functions that are generalizations of continuity.

Unless explicitly written, X and Y will be topological spaces. For a subset A
of X , denote by Cl(A) the closure of A and by Int(A) the interior of A. In the
results described below, unless explicitly written, we will assume that the functions
are defined on R.

2. Darboux and similar functions

Darboux functions

The oldest results on maximal classes are know for Darboux functions. Maximal
additive and maximal multiplicative classes were characterized by T. Radaković in
1931. A function f defined on R is Darboux if whenever a < b and c is any number
between f(a) and f(b), there is a number z ∈ (a, b) such that f(z) = c. Let C denote
the family of all continuous functions, D the family of all Darboux functions and Const
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the family of all constant functions. Further, let usc denote upper semicontinuous
functions and lsc lower semicontinuous functions.

Theorem 2.1 ([48]). Madd(D) = Mmult(D) = Const.

A characterization for maximum and minimum classes was given by J. Farková.

Theorem 2.2 ([11]). Mmax(D) = D ∩ usc, Mmin(D) = D ∩ lsc and Mlatt(D) = C.

J. Jastrzȩbski characterized maximal additive families for some subclasses of Dar-
boux functions. Denote the family of Darboux functions whose upper and lower
boundary functions are continuous by DC , the family of functions which take on
every real value in every interval by D∗, and the family of functions which take on
every real value c-times in every interval by D∗∗. Further, let ConstI be a family of
functions such that there exixts a sequence of open intervals (Ik) such that

⋃
k∈N

Ik
is dense in R and f ↾ Ik is constant, and let ConstcI be a family of functions such
that there is a sequence (Ik) of open intervals and a sequence (Ak) of sets such that⋃

k∈N
Ik is dense in R, Ak ⊂ Ik, the cardinality of Ak is less that c and f ↾ (Ik \Ak)

is constant ([24]).

Theorem 2.3 ([24]). Madd(DC) = C ∩ ConstI , Madd(D∗) = ConstI and
Madd(D∗∗) = ConstcI .

Darboux Baire one functions

Denote the family of all Baire one functions by B1. The maximal additive class for
Darboux Baire one functions was characterized by A. M. Bruckner and J. Ceder, see
also [8].

Theorem 2.4 ([9]). Madd(D ∩ B1) = C.

In [8], it is also shown that C  Mmult(DB1). The problem of characterizing the
maximal multiplicative family was solved by R. Fleissner.

Theorem 2.5 ([13]). Mmult(D ∩ B1) = M.

Here, M stands for the Fleissner family of all functions with the following property:
if x0 is a right-hand (left-hand) point of discontinuity of f , then f(x0) = 0, and there
exists a sequence (xn) converging to x0 such that xn > x0 (xn < x0) and f(xn) = 0.

Maximum and minimum classes were characterized again by J. Farková.

Theorem 2.6 ([11]). Mmax(D ∩ B1) = D ∩ usc, Mmin(D ∩ B1) = D ∩ lsc and
Mlatt(D) = C.

The characterization of maximal additive and multiplicative classes was extended
for functions defined on the Euclidean space Rm by L. Mǐśık in [38] and later, for
functions defined on some Banach spaces, in [39]. Let X be a topological space and
let B be a base for the topology in X . A real function defined on X is called B-Darboux
if for each A ∈ B, every x, y ∈ Cl(A) and each c between f(x) and f(y) there exists
a point z ∈ A such that f(z) = c. Denote the family of such functions by DB ([40]).
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Theorem 2.7 ([39]). Let X be a finite-dimensional strictly convex Banach space and
let B be the system of all sets a+Ur, where a ∈ X , Ur = {x ∈ X ; ‖x‖ < r} and r > 0.
Then, Madd(DB ∩B1) = C and Mmult(DB ∩B1) = MM , where MM is the family of
all B-Darboux Baire one functions with the property: if x ∈ X and B ∈ B are such
that x ∈ Cl(B) \ B and if there is a sequence (Cn) of elements of B such that x ∈
Cl(Cn) \Cn, Cn+1 ⊂ Cn ⊂ B, lim

n→∞
diam(Cn) = 0 and sup

n
inf f(Cn) < inf

n
sup f(Cn),

then f(x) = 0, and there exists a sequence (xk) of points of B such that f(xk) = 0
for all k.

Here, diam(C) is the diameter of the set C.

Connectivity and functionally connected functions

A function f : X → R is connectivity if the graph of f restricted to C is a con-
nected subset of X × R for each connected subset C of R. A function f : R → R is
functionally connected if for each a < b and each continuous function g : [a, b] → R

with (f(a) − g(a))(f(b) − g(b)) < 0, there is a point c ∈ [a, b] with f(c) = g(c) ([25]).
Denote by Con the family of all connected functions and by Fcon the family of all
functionally connected functions. Characterizations of maximal classes for these fam-
ilies are similar, however, a characterization of maximal classes for maximum and
minimum seems to be an open problem.

Theorem 2.8 ([25]). Madd(Con) = Madd(Fcon) = C.

Theorem 2.9 ([26]). Mlatt(Con) =Mlatt(Fcon) = C, Mmult(Con) =Mmult(Fcon)
= M, Mmax(Fcon) = D ∩ usc and Mmin(Fcon) = D ∩ lsc.

Extendable functions

A function f is extendable if there exists a connectivity function F : R× [0, 1] → R

such that F (x, 0) = f(x) for every x ∈ R. Denote by Ext the family of all extendable
functions.

Theorem 2.10 ([27]). Madd(Ext) = Mlatt(Ext) = C and Mmult(Ext) = M.

Functions with perfect road

A function f : R → R has a perfect road if for every x ∈ R there exists a perfect
set P having x to be a bilateral limit such that f ↾ P is continuous at x ([35]). Denote
functions with perfect road by PR. Maximal additive and multiplicative classes were
characterized by K. Banaszewski.

Theorem 2.11 ([2]). Madd(PR) = C and Mmult(PR) = M.
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Young (peripherally continuous) functions

A function f : R → R is a Young function (peripherally continuous function)
if for each x ∈ R there exist sequences (xn) and (yn) such that xn < x, yn > x,
lim
n→∞

xn = lim
n→∞

yn = x and lim
n→∞

f(xn) = lim
n→∞

f(yn) = f(x). Denote the family of all

Young functions by PC. Maximal classes were characterized by K. Banaszewski.

Theorem 2.12 ([2]). Madd(PC) = Mmax(PC) = Mmin(PC) = Mlatt(PC) = C
and Mmult(PC) = M.

CIVP functions and SCIVP functions

A function f : R → R has the Cantor intermediate value property if for every
x, y ∈ R and for each Cantor set K between f(x) and f(y) there exists a Cantor set
C between x and y such that f(C) ⊂ K ([15]). A function f has the strong Cantor
intermediate value property if for every x, y ∈ R and for each Cantor set K between
f(x) and f(y), there exists a Cantor set C between x and y such that f(C) ⊂ K and
the restriction f ↾ C is continuous. Denote the family of functions with the Cantor
intermediate value property by CIVP and with the strong Cantor intermediate value
property by SCIVP.

Theorem 2.13 ([4]). Assume CH. Then, Madd(CIV P ) = Mmult(CIV P ) =
Mlatt(CIV P ) = Madd(D ∩ CIV P ) = Mmult(D ∩ CIV P ) = Mlatt(D ∩ CIV P ) =
Const.

Theorem 2.14 ([14]). Assume CH. Then, Madd(SCIV P ) = Mmult(SCIV P ) =
Const.

Almost continuous (Stallings) functions

A function f is almost continuous (in the sense of Stallings) if for every open set
G ⊂ R× R containing the graph of f , there is a continuous function g such that the
graph of g lies in G ([52]). Denote the family of all almost continuous functions (in
the sense of Stallings) by ACS. For these functions we known all maximal classes.

Theorem 2.15 ([43]). Madd(ACS) = C.

Theorem 2.16 ([26]). Mmult(ACS) = Mlatt(ACS) = C.

The maximal classes for maximum and minimum were characterized only recently
(it is an affirmative answer to a conjecture in [26]).

Theorem 2.17 ([34]). Mmax(ACS) = D ∩ usc and Mmin(ACS) = D ∩ lsc.
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3. Quasicontinuous and similar functions

Quasicontinuous functions

Whereas the great part of results on maximal classes for Darboux-like functions
concerns functions defined on R, the great part of results on maximal classes for
quasicontinuous-like functions concerns functions defined on topological spaces. Let
X be a topological space and let C(f) denote the set of all continuity points of f .

Recall that a function f : X → R is said to be quasicontinuous at a point x if for
each neighbourhood U of x and each ε > 0, there is an open nonempty set G ⊂ U such
that f(G) ⊂ (f(x)− ε, f(x) + ε) ([28]). A function f is quasicontinuous if it is such at
every point. Denote the family of all quasicontinuous functions by Q and the family of
bounded functions by b. Further, denote by Q(f) the set of all quasicontinuity points
of f .

The maximal additive class and the maximal lattice-like class for quasicontinuous
functions was decribed by Z. Grande and L. So ltysik in [22].

Theorem 3.1 ([22]). Let X be a topological space. Then Madd(Q) = Mlatt(Q) = C.

The maximal multiplicative family for a complete metric space X was characterized
by Z. Grande and L. So ltysik in [22] and later, by Z. Grande, for an arbitrary topolog-
ical space X . Let QM stand for the family of all quasicontinuous functions f : X → R

with the property: if f is discontinuous at x, then f(x) = 0 and x ∈ Cl(C(f)∩f−1(0)).
Further, let QbM denote the family of all quasicontinuous functions with the property:
if f is discontinuous at x then f(x) = 0.

Theorem 3.2 ([21]). Let X be a topological space. Then, Mmult(Q) = QM and
Mmult(b ∩Q) = QbM .

Denote the family of all functions for which the set X \ C(f) is nowhere dense by
C∗, and the family of all functions for which the set X \Q(f) is nowhere dense by Q∗.
Whereas Madd(Q) 6= Mmult(Q), for the family Q∗, these maximal classes coincide.

Theorem 3.3 ([7]). Let X be a Baire space. Then, Madd(Q∗) = Mmult(Q∗) = C∗.

Maximal classes for maximum and minimum were described by T. Natkaniec.

Theorem 3.4 ([42]). Let X be a topological space. Then, Mmax(Q) = Mmin(Q) = C.

Upper and lower quasicontinuous functions

A function f : X → R is upper (lower) quasicontinuous at x ∈ X if for every
positive ε > 0 and every neighbourhood U of x there exists a nonempty open set
G ⊂ U such that f(y) < f(x) + ε (f(y) > f(x) − ε) for each y ∈ G ([10]). Let QE

denote the family of all functions which are both upper and lower quasicontinuous at
each x ∈ X . Notice that QE is a nowhere dense set in Q in the topology of the uniform
convergence (for X = R). Maximal additive and lattice-like classes were characterized
by E. Strońska in [53]. In her paper, we can find some necessary and some sufficient
conditions for the maximal multiplicative class, however, its characterization is still
open.
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Theorem 3.5 ([53]). Let X be a topological space. Then, Madd(QE) = Mmax(QE) =
Mmin(QE) = Mlatt(QE) = C.

Symmetrically quasicontinuous functions

A function f : X×Y → R (X and Y are topological spaces) is said to be quasicon-
tinuous at (x, y) with respect to first (second) coordinate if for every neighbourhoods
U , V and W of x, y and f(x, y), respectively, there are nonempty open sets G and
H such that x ∈ G ⊂ U , H ⊂ V (G ⊂ U , y ∈ H ⊂ V ) and f(G ×H) ⊂ W . A func-
tion f is symmetrically quasicontinuous at (x, y) if it is quasicontinuous both with
respect to the first and the second coordinate ([46]). Denote by Qsx, Qsy and Qss

the family of all functions which are quasicontinuous with respect to first coordinate,
quasicontinuous with respect to second coordinate, symmetrically quasicontinuous at
each point, respectively. Further, let Qss0 denote the family of all functions from Qss

such that f(x, y) 6= 0 for each (x, y) ∈ X × Y . For x ∈ X , a function fx : Y → R,
fx(y) = f(x, y) is the x-section of f ; similarly, the y-section fy : X → R is defined
as fy(x) = f(x, y). Maximal additive classes for Qsx and Qsy are characterized for
arbitrary topological spaces X and Y .

Theorem 3.6 ([19]). Let X and Y be topological spaces. Then,

Madd(Qsx) = {g ∈ Qsx; sections gx are continuous}.

Similarly,
Madd(Qsy) = {g ∈ Qsy; sections gy are continuous}.

The investigation of the maximal additive class for Qss is more complicated. Let
(x, y) ∈ X × Y be a point. We say that a closed set A ⊂ X × Y belongs to the family
S(x, y) [(P (x, y)] if we have:
Ax = {y} [Ay = {x}],
x ∈ Cl((Int(A))y) [y ∈ Cl((Int(A))x) ],
and for each point (u, v) ∈ A\{(x, y)}, we have u ∈ Cl(Int(A))v) and v ∈ Cl(Int(A))u),
where Ax = {t ∈ Y ; (x, t) ∈ A} and Ay = {t ∈ X ; (t, y) ∈ A}.

Theorem 3.7 ([19]). Let X and Y be topological spaces such that, for each point
(x, y) ∈ X × Y , the families S(x, y) and P (x, y) are nonempty. Then,

Madd(Qss) = {f ∈ Qss; f is separately continuous}.

There is an open problem whether above the theorem holds for arbitrary topological
spaces. The Euclidean plane (X = Y = R) satisfies the assumptions of this theorem.
Moreover, in his paper, we can find some necessary and some sufficient conditions
for the maximal multiplicative classes for families Qsx, Qsy and Qss, however, their
characterization is open. For the family Qss0 we have a characterization.

Theorem 3.8 ([19]). Let X and Y be topological spaces such that for each point
(x, y) ∈ X × Y the families S(x, y) and P (x, y) are nonempty. Then,

Mmult(Qss0) = {f ∈ Qss0; f is separately continuous}.
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Strongly quasicontinuous functions

For a measurable set E ⊂ R let ℓ(E) stand the Lebesgue measure of E. For a mea-
surable set E and x ∈ R, the numbers

dl(E, x) = lim inf
t→0+,k→0+

ℓ(E ∩ [x− t, x + k])

k + t
,

du(E, x) = lim sup
t→0+,k→0+

ℓ(E ∩ [x− t, x + k])

k + t

are called the upper and lower density of E at x, respectively. If dl(E, x) = du(E, x),
we call this number the density of E at x and denote it by d(E, x). If d(E, x) = 1, we
say that x is a density point of E. The family

Td = {A ⊂ R;A is measurable and every point x ∈ A is a density point of A}

is a topology called the density topology. A function f : R → R is called approxi-
mately continuous at x ∈ R if there is a measuarble set E containing x such that
d(E, x) = 1 and the restriction f ↾ E is continuous at x. Let Dap(f) be the set of
all points at which f is not approximately continuous. A function f is approximately
continuous if Dap(f) = ∅. Equivalently, a function f is approximately continuous if
it is continuous as the application from R equipped with the density topology Td. Of
course, approximately continuous functions are closed under addition and multiplica-
tion and so maximal classes are obvious. Let A denote the family of all approximately
continuous functions and Cae the family of functions continuous almost everwhere (i.e.
such that ℓ(D(f) = 0).

A function f : R → R is strongly quasicontinuous if for every x ∈ R, for every
set A ∈ Td containing x and for every ε > 0 there is an open interval I such that
I ∩A 6= ∅ and |f(t) − f(x)| < ε for all t ∈ A ∩ I. A function f : R→ R is s1-strongly
quasicontinuous (s2-strongly quasicontinuous) if for every x ∈ R, for every set A ∈ Td
containing x and for every ε > 0 there exists an open interval I such that I ∩A 6= ∅,
I ∩A ⊂ C(f) (I ∩A ⊂ R \Dap(f)) and |f(t)− f(x)| < ε for all t ∈ A∩ I. Denote the
families of strongly quasicontinuous functions, s1-strongly quasicontinuous functions
and s2-strongly quasicontinuous functions by Qs, Qs1 and Qs2 , respectively ([18]).
Maximal families were investigated by E. Strońska.

Theorem 3.9 ([55]). Madd(Qs) = Mmax(Qs) = Mmin(Qs) = Mlatt(Qs) = Qs ∩
A∩Cae, Madd(Qs1) = Mmax(Qs1) = Mmin(Qs1) = Mlatt(Qs1) = Qs1 ∩A∩Cae and
Madd(Qs2) = Mmax(Qs2) = Mmin(Qs2) = Mlatt(Qs2) = Qs2 ∩ A ∩ Cae.

Let Tae be the family of all sets A ∈ Td such that ℓ(A \ Int(A)) = 0. The family
Tae is also topology. Let MQ denote the family of all functions with this property:
if f is not Tae-continuous at x ∈ R (where f is considered as the application from R

equipped with the topology Tae) then f(x) = 0 and du({t ∈ R; f(t) = 0}, x) > 0.

Theorem 3.10 ([55]). Mmult(Qs) = Qs ∩ MQ, Mmult(Qs1) = Qs1 ∩ MQ and
Mmult(Qs2) = Qs2 ∩MQ.

The results were later extended for functions f : Rm → R by E. Strońska in [54].



Maximal classes for some families of Darboux-like and quasicontinuous-like functions 163

4. Darboux quasicontinuous and similar functions

Darboux quasicontinuous functions

Maximal classes for functions both Darboux and quasicontinuous were character-
ized by T. Natkaniec.

Theorem 4.1 ([41]). Madd(D ∩ Q) = Mmult(D ∩ Q) = Const, Mmax(D ∩ Q) =
D ∩ usc, Mmin(D ∩Q) = D ∩ lsc and Mlatt(D ∩Q) = C.

Darboux cliquish functions

A function f : X → R is said to be cliquish if for each point x and for each
neighbourhood U of x and each ε > 0 there is an open nonempty set G ⊂ U such
that |f(y) − f(z)| < ε for all y, z ∈ G. A function f defined on R is cliquish if the
set of continuity points of f is dense in R. Denote the family of cliquish functions
by Cliq. The family Cliq is closed under addition and multiplication, so maximal
families are obvious. Further, let Bα denote the family of all functions in Baire class
α and L the family of all measurable functions. Maximal classes for Darboux cliquish
functions were investigated by A. Maliszewski. A function f is in honorary Baire class
two if there is a function g in Baire class one which equals f for all but countably
many arguments. Denote the family of all honorary Baire class two functions by
Bh
2 . The maximal additive class for Darboux honorary Baire class two functions was

characterized by I. Pokorný in [47], the maximal multiplicative class by A. Maliszewski
in [33].

Theorem 4.2 ([47]). Madd(Bh
2 ) = Const.

Theorem 4.3 ([33]). Let α > 2. Then, Madd(D ∩ Cliq) = Madd(L ∩ D ∩ Cliq) =
Madd(D ∩ Cliq ∩ Bα) = Madd(D ∩ Bα) = Const.

Theorem 4.4 ([33]). Let α > 2. Then, Mmult(D ∩Cliq) = Mmult(L ∩D ∩Cliq) =
Mmult(D ∩ Cliq ∩ Bα) = Mmult(D ∩ Bα) = Mmult(D ∩ Bh

2 ) = Const.

Darboux almost continuous (Stallings) functions

T. Natkaniec characterized maximal additive, multiplicative and lattice-like classes
for these families. A problem to characterize the maximal classes with respect to
maximum (minimum) remains open.

Theorem 4.5 ([41]). Madd(ACS ∩ Q) = Mlatt(ACS ∩ Q) = C and Mmult(ACS ∩
Q) = M.
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Connectivity quasicontinuous functions

Similarly, maximal additive, multiplicative and lattice-like families were charac-
terized by T. Natkaniec. And, similarly, a problem of characterizing the maximal
maximum (minimum) class is open.

Theorem 4.6 ([41]). Madd(Con∩Q) = Mlatt(Con∩Q) = C and Mmult(Con∩Q) =
M.

Strong Świa̧tkowski and extra strong Świa̧tkowski functions

A function f : R → R is a strong Świa̧tkowski function if whenever a < b and
c is between f(a) and f(b), there is x ∈ (a, b) ∩ C(f). A function f is an extra
strong Świa̧tkowski function if f([a, b]) = f([a, b] ∩ C(f)) for all a < b. Let Ss de-
note the family of all strong Świa̧tkowski functions and Ses the family of all extra
strong Świa̧tkowski functions. Evidently, Ses ⊂ Ss ⊂ D ∩ Q. Maximal families were
characterized by P. Szczuka.

Theorem 4.7 ([56]). Madd(Ss) = Madd(Ses) = Mmult(Ss) = Mmult(Ses) =
Mmax(Ss) = Mmax(Ses) = Mmin(Ss) = Mmin(Ses) = Mlatt(Ss) = Mlatt(Ses) =
Const.

5. Other generalizations of continuity

Functions with closed graph

A function f : X → R has closed graph if the graph of f is a closed subset of
X×R. Let U denote the family of functions with closed graph. Maximal additive and
multiplicative families were characterized by R. Menkyna.

Theorem 5.1 ([36]). Let X be a topological space. Then, Madd(U) = C.

Theorem 5.2 ([36]). Let X be a locally compact normal topological space. Then,
Mmult(U) = {f ∈ C; f−1(0) is an open set }.

Quasicontinuous functions with closed graph

Maximal families for these families were characterized by W. Sieg.

Theorem 5.3 ([51]). Let X = R. Then, Madd(Q ∩ U) = C, Mmult(Q ∩ U) = {f ∈
C; f−1(0) is an open set }, and Mmax(Q∩ U) = Mmin(Q∩ U) = Mlatt(Q∩ U) = ∅.

It remains open to question whether this theorem holds for an arbitrary topological
space.
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Graph continuous

A function f : X → R is graph continuous if there exists a continuous function
g : X → R such that the closure of the graph of f contains the graph of f . Let Gr be
the family of graph continuous functions. Maximal families were characterized by K.
Sakálová.

Theorem 5.4 ([50]). Let X be a connected Hausdorff topological space. Then,
Madd(Gr) = Gr ∩Cliq.

Simply continuous functions

A function f : X → R is simply continuous if for each open set V in R, the set
f−1(V ) is the union of an open set and a nowhere dense set in X ([5]). Let S denote
the family of all simply continuous functions. We have Q ⊂ S and, if X is Baire,
S ⊂ Cliq. Further, let ConstG be the family of all functions for which the set

⋃
G(f)

is dense in X , where G(f) = {G ⊂ X ;G is open and f is constant on G}. (Therefore,
for X = R we have the Jastrzȩbski family ConstI .)

Theorem 5.5 ([7]). Let X be a Baire space such that the family of all connected
open sets is a π-base for X and there is a dense set of first category in X. Then,
Madd(S) = Mmult(S) = ConstG.

This theorem does not hold for an arbitrary topological space X . For maxima and
minima we have

Theorem 5.6 ([6]). Assume that X is a topological space with the following property:

(*) if (Xn) is a partition of X such that
⋃

n∈M Xn is simply open for each M ⊂ N,
and G is a nonempty open set in X, then G ∩ IntXn 6= ∅ for some n ∈ N.

Then Mmax(S) = Mmin(S) = Mlatt(S) = S.

If X is either a Baire space, or has a locally countable π-base, then it possesses the
property (*), however, there are topological spaces which are neither Baire nor have
countable π-base, but still possess the property (*). Moreover, there are topological
spaces which do not satisfy condition (*). It is an open problem whether this theorem
is true for an arbitrary topological space.

Almost continuous functions (Husain)

A function f : X → R is precontinuous or almost continuous (in the sense of
Husain) if for each point x ∈ X and for every ε > 0 we have x ∈ Int(Cl(f−1(f(x) −
ε, f(x) + ε))). Let ACH denote the family of all functions almost continuous in the
sense of Husain. The maximal families were characterized by Z. Grande.

Theorem 5.7 ([16]). Let X be a topological space. Then, Madd(ACH) =
Mmult(ACH) = Mmax(ACH) = Mmin(ACH) = Mlatt(ACH) = C.
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ρ-upper continuous and similar functions

A function f : R → R is 1-upper continuous if for every x ∈ R there exists
a measurable set E containing x such that du(E, x) = 1 and the restriction f ↾ E
is continuous at x. For 0 < ρ < 1, a function f is ρ-upper continuous if there is
a measurable set E containing x such that d(E, x) > ρ and the restriction f ↾ E is
continuous at x. Let C1 denote the family of all 1-upper continuous functions and Cρ
denote the family of all ρ-upper continuous functions. Maximal classes for families C1
and Cρ were investigated by S. Kowalczyk and K. Nowakowska.

Theorem 5.8 ([31]). Let 0 < ρ < 1. Then Madd(Cρ) = A.

The family A is only a proper subset of Madd(C1). A measurable set E is called
sparse at x ∈ R if for every measurable set F ⊂ R, if du(F, x) < 1, then du(E∪F, x) <
1 ([12]). A function f : R→ R is T ∗-continuous if for each x ∈ R and for each ε > 0,
the complement of the set {y ∈ R; |f(y) − f(x)| < ε} is sparse at x. Let CT∗ denote
the family of all T ∗-continuous functions.

Theorem 5.9 ([31]). Madd(C1) = CT∗ .

For 0 < ρ < 1, let Zρ be the family of all measurable functions f : R → R such
that for each x ∈ Dap(f) we have f(x) = 0, and, for each measurable set E such that
f−1(0) ⊂ E and du(E, x) > ρ, we have lim

ε→0+
du(E∩{y ∈ R; |f(y)| < ε}, x) > ρ. Let Z1

be the family of all measurable functions such that for each point x at which f is not
T ∗-continuous we have f(x) = 0 and, for each measurable set E such that f−1(0) ⊂ E
and du(E, x) = 1 and for each ε > 0 we have du(E ∩ {y ∈ R; |f(y)| < ε}, x) = 1. The
family A is a proper subset of Zρ and the family CT∗ is a proper subset of Z1.

Theorem 5.10 ([31]). Mmult(C1) = Z1 and Mmult(Cρ) = Zρ.

Similar functions are defined in [45]. Let 0 < λ 6 ρ < 1. A function f : R → R is
called [λ, ρ]-continuous if for each x ∈ R there exists a measurable set E containing
x such that dl(E, x) > λ, du(E, x) > ρ and f ↾ E is continuous at x. Let C[λ,ρ] be the
family of all [λ, ρ]-continuous functions. Maximal additive families for these functions
were characterized in [32].

Theorem 5.11 ([32]). Madd(C[λ,ρ]) = A.

For 0 < λ 6 ρ < 1, let Z[λ,ρ] be the family of all measurable functions f : R → R

such that for each x ∈ Dap(f) we have f(x) = 0, and for each measurable set E
such that f−1(0) ⊂ E, dl(E, x) > λ and du(E, x) > ρ we have lim

ε→0+
dl(E ∩ {y ∈

R; |f(y)− f(x)| < ε}, x) > λ and lim
ε→0+

du(E ∩ {y ∈ R; |f(y)− f(x)| < ε}, x) > ρ. The

family A is a proper subset of Z[λ,ρ].

Theorem 5.12 ([32]). Mmult(C[λ,ρ]) = Z[λ,ρ].

Theorem 5.13 ([32]). Mmax(C[λ,ρ]) = Mmin(C[λ,ρ]) = Mlatt(C[λ,ρ]) = A.

A function f : R → R is called [0]-continuous if for each x ∈ R there exists
a measurable set E containing x such that dl(E, x) > 0 and f ↾ E is continuous at
x. Let C[0] be the family of all [0]-continuous functions. For a function f , let T (f)
be the set of all x ∈ R such that for each measurable set E with dl(E, x) > 0
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we have lim
ε→0+

dl(E ∩ {y ∈ R; |f(y) − f(x)| < ε}, x) > 0 ([30]). Let T[0] denote the

family of all functions for which T (f) = R. Further, let W[0] be the family of all
measurable functions f : R → R such that for each x /∈ T (f), we have f(x) = 0,
and for each measurable set E such that f−1(0) ⊂ E and dl(E, x) > 0, we have
lim

ε→0+
dl(E∩{y ∈ R; |f(y)−f(x)| < ε}, x) > 0. We have A ( T[0] ( CT∗ and W[0] ( T[0].

Theorem 5.14 ([30]). Madd(C[0]) = T[0] and Mmult(C[0]) = W[0].
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6. Borśık J.: Maxima and minima of simply continuous and quasicontinuous functions. Math.

Slovaca 46 (1996), 261–268.
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